Compressive Sensing

نویسندگان

  • Massimo Fornasier
  • Holger Rauhut
چکیده

Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as l1-minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing and Information Theory

In a series of recent work [5, 4], the theory of compressive sensing has been examined from an information theory perspective. Novel results regarding noisy compressive sensing have been found while viewing the compressive sensing problem as a communication channel. This perspective led to a new approach of solving the compressive sensing problem through a Bayesian approach. Belief propagation,...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Measure What Should be Measured: Progress and Challenges in Compressive Sensing

Is compressive sensing overrated? Or can it live up to our expectations? What will come after compressive sensing and sparsity? And what has Galileo Galilei got to do with it? Compressive sensing has taken the signal processing community by storm. A large corpus of research devoted to the theory and numerics of compressive sensing has been published in the last few years. Moreover, compressive ...

متن کامل

Compressive Sensing in Holography

Compressive sensing provides a new framework for simultaneous sampling and compression of signals. According to compressive sensing theory one can recover compressible signals and images from far fewer samples or measurements that traditional methods use. Applying compressive sensing theory for holography comes natural since three-dimensional (3D) data is typically very redundant, thus it is al...

متن کامل

An overview of compressive sensing techniques applied in holography

In recent years compressive sensing has been successfully introduced in digital holography. Depending on the ability to sparsely represent an object, the compressive sensing paradigm provides an accurate object reconstruction framework, from a relatively small number of encoded signal samples. Digital holography has been proven to be an efficient and physically realizable sensing modality that ...

متن کامل

Deterministic Sensing Matrices in Compressive Sensing: A Survey

Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015